Precision placement of heteroepitaxial semiconductor quantum dots
نویسندگان
چکیده
We describe two new approaches to the patterning of Si(1 0 0) surfaces for controlled nucleation of heteroepitaxial Ge semiconductor clusters. In the first method, a Ga -focused ion beam in situ to the growth chamber is used to create local regions of enhanced Ga concentration and surface topography. It is shown that at low ion doses ( /10 cm ), implanted Ga causes local nucleation of Ge clusters upon the implanted region. At higher doses (]/10 cm ), a complex surface topography localizes nucleation of Ge clusters. This approach can be used to seed complex patterns of Ge clusters with diameters of tens of nanometers and positional accuracy of sub-100 nm. The second method employs self-assembly of complex strain-stabilized ‘‘quantum quadruplet’’ and ‘‘quantum fortress’’ structures, whereby cooperative island nucleation around shallow strain-relieving pits is identified during Gex Si1 x /Si(1 0 0) heteroepitaxy. These configurations are kinetically limited structures that exist over a range of compositions, growth temperatures, and growth rates, but which are destabilized by strain relaxation (e.g. by the introduction of misfit dislocations) and by growth conditions which provide high adatom surface mobilities. Both methods have broad potential application to nanoelectronic device architectures. # 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Synthesis and Optical Study of CdZnTe Quantum Dots
The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...
متن کاملSynthesis and Optical Study of CdZnTe Quantum Dots
The comparison of growth processes and fluorescent properties of CdZnTe semiconductor quantum dots that are synthesized in different concentrations of Zn2+ in water are discussed in this paper. The samples are characterized through absorbtion (UV) and photoluminescence spectra (PL). The results show that when the reaction time is prolonged, the absorption peak and fluorescent emission peak pres...
متن کاملProperties and applications of quantum dot heterostructures grown by molecular beam epitaxy
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which ar...
متن کاملApplications of Quantum Dots in Cell Tracking
Tracking cells after transplantation is always one the main concerns of researchers in the field of regenerative medicine. Finding a tracer with long stability and low cytotoxicity can be considered as a solution for this issue. Semiconductor nanocrystals, also called quantum dots (QDs), have unique photophysical properties which make them as suitable candidate in this setting. Broad-range exci...
متن کاملOptical, Thermal and Structural Properties of CdS Quantum Dots Synthesized by A Simple Chemical Route
The present work deals with the synthesis and characterization of CdS nanoparticles with good thermal stability and optical properties by a novel and simple synthetic route. The nanoparticles were synthesized via chemical precipitation method in a single reaction vessel under ambient conditions. The prepared CdS nanoparticles were compared with the bulk CdS. The Optical properties were determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003